was discovered⁹⁸ in which the V^{3+} ion very nearly filled the *a* sites and in fact Ca₃V₂Si₃O₁₂ and the analogous germanate have been synthesized by others and also by us (see Table 3).

It still appears, however, that in the garnets, site preferences depend mostly on relative ionic sizes with the largest ions tending to occupy the dodecahedral or 8-coordination sites. Usually, but no always the smallest ions prefer the tetrahedral sites. There is no dould that the Cr³⁺ ion in both the perovskite-like and garnet compound is smaller than the Fe³⁺ ion. In fact, according to crystal field theory it should be^{50,51}. Still the Cr³⁺ ion prefers cubic or octahedral sym metry; in the garnets it appears to go exclusively into the a sites ever when other ions present are larger, for example, when substituted for Fe³⁺ or Ga³⁺ ions in YFe or YGa garnet, respectively. Much mon Cr³⁺ replaces the Ga³⁺ than it does the Fe³⁺ ion indicating how sensitive this replacement is to the relative ionic sizes of the Fe³⁺ and Ga³⁺ in the tetrahedral coordination ⁶⁶.

As pointed out earlier, the behavior of Ga³⁺ vs Al³⁺ ion when substituted for Fe³⁺ ion is still not understood on the ionic size basis Also it is not entirely clear why so large an ion as Co^{2+} , while preferring the octahedral sites also goes into tetrahedral sites in substantia amount. [However, Co²⁺ does have a pseudospherical ground stat $(4A_2)$ in tetrahedral coordination; this may yet have some bearin: on the matter.]

In a 1964 paper⁹⁵, REINEN has made certain claims regarding the GELLER vertretene Ansicht, daß das Co²⁺-Ion in Granaten die oktaedrische Koordination der tetraedrischen vorzieht, ist sicherlich nicht korrekt". The reference REINEN gives is to the present reference REINEN goes on to point out "... daß wie in Spinellen das Co²⁺-Io auch in Granaten eine starke Tendenz zu tetraedrischer Koordination besitzt." Further he says that the presence of the small Ge4+ ions however, blocks the tetrahedral sites and therefore weakens this tendency. I shall show that all the evidence, including even the of REINEN, supports the original conclusion that in the garnets, the Co²⁺ ions prefer octahedral sites even though some Co²⁺ ions may go into tetrahedral sites.

The situation in the case of the spinels is not at all straightforward In $CoAl_2O_4$ the Co^{2+} ions are in tetrahedral sites; on this basis alon

Crystal chemistry of the garnets

and might say that Co^{2+} ions appear to prefer tetrahedral sites, else (0.Al₂O₄ would be an inverse spinel. Contrary to REINEN's arguments, however, very little, if any, germanium seems to exchange with Co in C_{O_4} GeO₄, even though this should be easier in the spinel than in the arnet structure. So this already moves toward refutation of REINEN's thinking even on the spinels. But the really important point is that $_{\rm Co} Fe_{\circ} O_{4}$ is an inverse spinel. Magnetic measurements have shown that all the Co²⁺ ions are in octahedral sites*. There is no germanium doing any blocking in CoFe₂O₄; the Fe³⁺ ions could be in either site. In fact, $MnFe_2O_4$ tends to be a normal spinel so it would seem that Co^{2+} does not actually show much desire for tetrahedral sites in CoFe₂O₄. But the situation with the garnets is much clearer: REINEN's remarks notwithstanding, the Co²⁺ ions prefer the octahedral coordination even though they will go into tetrahedral sites.

Now one of REINEN's strongest arguments is his synthesis of Ca₃Zr₂Ge₂CoO₁₂ showing that he was able to force one cobalt per formula unit into tetrahedral sites. On the other hand, he says that the distribution in $\{Y_2Ca\}[Co_2](Ge_3)O_{12}$ is as here indicated, that is, all octahedral sites are *filled* with Co^{2+} ions.

In the earlier part of his paper, REINEN says that even in Ca₃ZrCoGe₃O₁₂, much cobalt is in tetrahedral sites with an amount of Ge¹⁺ equal to it in octahedral sites. Then why does not just a little bit of Co exchange with Ge in the case of {Y₂Ca}[Co₂](Ge₃)O₁₂? Further, even though he found that Y₂Co₃Ge₃O₁₂ was blue when fired site preference of the Co^{3+} ion. In particular he states: "Die vot in N_2 , he agreed with us that the distribution is as we suggested it is-that is, {Y₂Co}[Co₂](Ge₃)O₁₂. Thus logically, this implies only that even if one could make garnets in which the d sites must be *filled* with Co²⁺ ions, all one could say is that the Co²⁺ ions do not have a preference between a and d sites. Of course, no such garnet has been made.

> Actually, it is not even possible to make the garnet [Ca₃][Zr₂](CoGe₂)O₁₂ (claimed by REINEN) by solid-state reaction. We have investigated the following system: {Ca₃}CoZr_yGe_{3-y}O₁₂ to we how much Co^{2+} ion will be forced into the tetrahedral sites. We assume that little or no Ge⁴⁺ will be in octahedral sites and will show later why this is valid. Thus we may write the distribution formula

⁹⁸ R. H. MOENCH and R. MEYROWITZ, Goldmanite, a vanadium garnet from Laguna, New Mexico. Amer. Mineral. 49 (1964) 644-655.

^{*} Added in proof. A paper (EC-1) presented at the recent International Congress on Magnetism by G. A. SAWATSKY, F. VAN DER WOUDE and A. H. MORRISH indicates that the distribution of Co^{2+} ion in $\mathrm{CoFe_2O_4}$ is sensitive to heat treatment. Nevertheless, at most, about 20 $^{0}\!/_{0}$ of the Co²⁺ ions enter tetrahedral sites.